
Seven-League Hydro Code

Philipp V. F. Edelmann, Heidelberger Institut für Theoretische
Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany

Friedrich K. Röpke, Heidelberger Institut für Theoretische Studien,
Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany

Description of the Code

The Seven-League Hydro (SLH) code is an astrophysical hydrodynamics code
with a focus on applications in stellar astrophysics. Its distinguishing features
are special low Mach number discretizations of the hydrodynamical fluxes and
implicit time stepping. Both enable us to cover the long time scales involved in
many problems of stellar evolution.

As the code uses implicit time discretization, we need to solve a nonlinear
system of equations at every time step. We use the Newton-Raphson method for
this, which involves the solution of a linear system for each Newton iteration.
This system is extremely large. For a grid size of 10243 cells the number of
unknowns is about 5 billion. We use iterative linear solvers, mostly BiCGSTAB,
GMRES, and multigrid, for this system. This makes up the main workload in
most cases. As the Mach numbers in our simulations are typically . 10−3, it is
still more efficient than explicit methods due to the much larger time steps that
are possible with an implicit method.

Conventional compressible solvers are known to yield wrong results if used
for flows at low Mach numbers. This problem is often fixed by making simpli-
fications to underlying equation (e.g. Boussinesq or anelastic approximation).
This causes problems for flows that also include regions that are not strictly
in the low Mach regime. Therefore, SLH takes the approach to modify the
numerical solver to behave correctly also in the low Mach number limit. The
method of choice in SLH is a flux preconditioned Roe solver [1]. This makes
SLH essentially an all Mach number code.

SLH is a relatively new code (development started in 2009) written in For-
tran 95. We use MPI parallelization with an optional hybrid mode using
OpenMP. It does not rely on external libraries except for an implementation
of LAPACK. In particular, the implementations of the linear solvers are tai-
lored to the sparse matrix structure that occurs in the solution of the Euler
equations.

Output is written in a custom binary format using MPI-IO. Typically one
file per time step is used, written using collective MPI-IO calls. There is another
mode which writes one file per MPI process.

1



Figure 1: Nuclear reactions in the accreted envelope of a white dwarf star,
possible progenitor to a classical nova. The orange color shows the contribution
of the reaction 12C(p, γ)13N to energy release, the blue color shows 15N(p, α)12C.
Image credit: Alejandro Bolaños (Würzburg University)

Results

During the workshop we were able to run our test setup on all racks of JUQUEEN.
Previous tests were only run on up to 8 racks during normal operation. Also we
were able to test our I/O routines on up to 16 racks.

The problem setup for the test runs was the Taylor–Green vortex [2, 3],
a decaying vortex initial condition, which is often used to study turbulence
properties of fluid dynamics schemes. As a part of project HWB07 we previously
ran this setup for a range of resolutions (up to 10243) and discretizations and
analyzed the turbulent energy spectrum and the numerical Reynolds number,
especially its behavior at low Mach numbers.

There were no unexpected problems with SLH running in different configu-
rations on JUQUEEN. The fact that SLH uses a static domain decomposition
proved to be a small nuisance when scaling to the full machine as the grid size
needs to accommodate the number of processes. This could be fixed by allowing
a nonuniform distribution of the grid to the MPI ranks but as long as SLH does
not include adaptive mesh refinement and load balancing this would likely dete-
riorate the scaling properties. An alternate approach would be to use less than
16 processes per node. The efficiency of the OpenMP part of the parallelization
should be improved in this case. On JUQUEEN SLH currently only uses it for
running 4 threads on the same core as this was tested to be the most efficient

2



configuration.
We performed two main series of scaling tests, one on a 19203 grid ranging

from 4 to 24 racks and another one on a 26883 grid ranging from 14 to 28 racks.
The results are shown in Fig. 2 and 3. As it is almost purely a local problem
with mostly constant compute time, the computation of the fluxes and source
terms (FS) always scales almost ideally. The overall scaling behavior is mostly
dominated by the linear solver (LS) component, which takes roughly 90% of
the total computation time. The fact that scaling is more than ideal for the
first step in the runs with a 19203 grid is probably due to the fact that the
configuration with the fewest number of nodes used about 0.9 GiB/core, almost
all available memory. The deterioration of scaling efficiency at the last data
point is possibly due to the non ideal domain decomposition of 192 × 64 × 32
instead of 96 × 64 × 64. The runs with a 26883 grid show a promising scaling
behavior, reaching 88% of the ideal speed-up.

All the above tests were run without I/O but we performed a separate set of
I/O benchmarks by writing the typical output of a 19203 grid (about 264 GiB).
We tested writing to one large file using MPI-IO and writing to one file per
process using standard functions from C stdio. No file system hints were set
during the tests. The files were created prior to the measurement, which had a
positive impact on performance. The results are shown in Table 3. Writing one
file per process generally delivers better performance but it would have to be
accompanied by a post-processing step that aggregates the output into one file
for practical reasons. Proper use of file system hints could possibly make the
one file scenario significantly faster.

Table 1: Strong scaling tests on 19203 grid. The total memory requirement is
57.5 TiB.

bg size rpn MPI ranks tpp threads GiB/core time (s)

4096 16 65536 4 262144 0.90 2523.07
8192 16 131072 4 524288 0.45 993.014

12288 16 196608 4 786432 0.30 739.081
16384 16 262144 4 1048576 0.22 631.751
20480 16 327680 4 1310720 0.18 505.144
24576 16 393216 4 1572864 0.15 555.133

Table 2: Strong scaling tests on 26883 grid. The total memory requirement is
145.8 TiB.

bg size rpn MPI ranks tpp threads GiB/core time (s)

14336 16 229376 4 917504 0.60 1472.58
21504 16 344064 4 1376256 0.40 1179.25
28672 16 458752 4 1835008 0.30 835.565

Apart from showing that SLH can scale reasonably to the full machine,
participation in the scaling workshop enabled us to learn about new analysis

3



Table 3: Timings and I/O bandwidth reached when writing 264 GiB of output.
Output was either written using MPI-IO to a single file (one file) or using C
stdio using one file per process (many files). The files were create prior to
measurement. The 16 rack test was not run in many files mode to avoid stress
on the file system.

number of racks 4 8 16

walltime in s
one file 45.3 29.8 54.1

many files 15.9 10.7
bandwidth in GiB/s

one file 5.8 8.9 4.9
many files 15.6 24.7

65 536 131 072 196 608 262 144 327 680 393 216

number of cores

1.0

2.0

3.0

4.0

5.0
6.0

sp
ee

d
-u

p

ideal

total

LS

FS

Figure 2: Strong scaling on a 19203 grid. The code was run with one MPI process
per core and 4 OpenMP threads per process. The different markers show speed-
up for the total runtime, the linear solver (LS), and the computation of fluxes
and source terms (FS). The point of reference for each is the lowest number of
cores. The raw data are given in Table 1.

tools and platform-specific settings, especially with respect to I/O. Additionally,
we were able to get advice directly from one of the SIONlib developers, which
helped us evaluate its usefulness for our I/O scenario and devise a strategy of
integrating it with SLH with minimal programming effort.

Conclusions

The tests during the scaling workshop showed that SLH can scale to the full
machine (Fig. 3) at 88% of the ideal speed-up compared to half the machine.
Most potential for future improvement is definitely in the linear solver part of
the code, which includes most of the collective communication. The I/O tests
revealed the fact that SLH achieves better performance when writing one file per
process even for more than 105 processes. This prompted the decision to include

4



229 376 344 064 458 752

number of cores

1.0

1.5

2.0
sp

ee
d

-u
p

ideal

total

LS

FS

Figure 3: Strong scaling on a 26883 grid. The code was run with one MPI process
per core and 4 OpenMP threads per process. The different markers show speed-
up for the total runtime, the linear solver (LS), and the computation of fluxes
and source terms (FS). The point of reference for each is the lowest number of
cores. The raw data are given in Table 2.

SIONlib as an additional output method for SLH. We will also investigate the
impact of file system hints for MPI-IO output in future tests.

Acknowledgments

This work was supported by the Klaus Tschira Foundation.

References

[1] Miczek, F. and Röpke, F. K. and Edelmann, P. V. F.; New numerical
solver for flows at various Mach numbers; Astronomy and Astrophysics
576 (2015) A50; [DOI: 10.1051/0004-6361/201425059]

[2] Taylor, G. I. and Green, A. E.; Mechanism of the Production of Small
Eddies from Large Ones; Royal Society of London Proceedings Series A
158 (1937) 499–521

[3] Drikakis, D. and Grinstein, F. F. and Youngs, D; Simulation of transition
and turbulence decay in the Taylor–Green vortex ; Journal of Turbulence 8
(2007) N20

5


